8 research outputs found

    Continuous-time modelling of behavioural responses in animal movement

    Get PDF
    Funding: TM, RG, CH, and LT were funded by the US office of Naval Research, Grant N000141812807. This work was supported by the US Fleet Forces Command through the Naval Facilities Engineering Command Atlantic under Contract No. N62470-15-D-8006, Task Order 50, Issued to HDR, Inc.There is great interest in ecology to understand how wild animals are affected by anthropogenic disturbances, such as sounds. For example, behavioural response studies are an important approach to quantify the impact of naval activity on marine mammals. Controlled exposure experiments are undertaken where the behaviour of animals is quantified before, during, and after exposure to a controlled sound source, often using telemetry tags (e.g., accelerometers, or satellite trackers). Statistical modelling is required to formally compare patterns before and after exposure, to quantify deviations from baseline behaviour. We propose varying-coefficient stochastic differential equations (SDEs) as a flexible framework to model such data, with two components: (1) time-varying baseline dynamics, modelled with non-parametric or random effects of time-varying covariates, and (2) a nonparametric response model, which captures deviations from baseline. SDEs are specified in continuous time, which makes it straightforward to analyse data collected at irregular time intervals, a common situation for animal tracking studies. We describe how the model can be embedded into a state-space modelling framework to account for measurement error. We present inferential methods for model fitting, model checking, and uncertainty quantification (including on the response model). We apply this approach to two behavioural response study data sets on beaked whales: a satellite track, and high-resolution depth data. Our results suggest that the whales’ horizontal movement and vertical diving behaviour changed after exposure to the sound source, and future work should evaluate the severity and possible consequences of these responses. These two very different examples showcase the versatility of varying-coefficient SDEs to measure changes in behaviour, and we discuss implications of disturbances for the whales’ energetic balance.PostprintPeer reviewe

    Varying-coefficient stochastic differential equations with applications in ecology

    Get PDF
    This work was funded by the US office of Naval Research, Grant N000141812807.Stochastic differential equations (SDEs) are popular tools to analyse time series data in many areas, such as mathematical finance, physics, and biology. They provide a mechanistic description of the phenomenon of interest, and their parameters often have a clear interpretation. These advantages come at the cost of requiring a relatively simple model specification. We propose a flexible model for SDEs with time-varying dynamics where the parameters of the process are nonparametric functions of covariates, similar to generalized additive models. Combining the SDE and nonparametric approaches allows for the SDE to capture more detailed, non-stationary, features of the data-generating process. We present a computationally efficient method of approximate inference, where the SDE parameters can vary according to fixed covariate effects, random effects, or basis-penalty smoothing splines. We demonstrate the versatility and utility of this approach with three applications in ecology, where there is often a modelling trade-off between interpretability and flexibility.Publisher PDFPeer reviewe

    Understanding decision making in a food-caching predator using hidden Markov models

    No full text
    Background: Tackling behavioural questions often requires identifying points in space and time where animals make decisions and linking these to environmental variables. State-space modeling is useful for analysing movement trajectories, particularly with hidden Markov models (HMM). Yet importantly, the ontogeny of underlying (unobservable) behavioural states revealed by the HMMs has rarely been verified in the field. Methods: Using hidden Markov models of individual movement from animal location, biotelemetry, and environmental data, we explored multistate behaviour and the effect of associated intrinsic and extrinsic drivers across life stages. We also decomposed the activity budgets of different movement states at two general and caching phases. The latter - defined as the period following a kill which likely involves the caching of uneaten prey - was subsequently confirmed by field inspections. We applied this method to GPS relocation data of a caching predator, Persian leopard Panthera pardus saxicolor in northeastern Iran. Results: Multistate modeling provided strong evidence for an effect of life stage on the behavioural states and their associated time budget. Although environmental covariates (ambient temperature and diel period) and ecological outcomes (predation) affected behavioural states in non-resident leopards, the response in resident leopards was not clear, except that temporal patterns were consistent with a crepuscular and nocturnal movement pattern. Resident leopards adopt an energetically more costly mobile behaviour for most of their time while non-residents shift their behavioural states from high energetic expenditure states to energetically less costly encamped behaviour for most of their time, which is likely to be a risk avoidance strategy against conspecifics or humans. Conclusions: This study demonstrates that plasticity in predator behaviour depending on life stage may tackle a trade-off between successful predation and avoiding the risks associated with conspecifics, human presence and maintaining home range. Range residency in territorial predators is energetically demanding and can outweigh the predator’s response to intrinsic and extrinsic variables such as thermoregulation or foraging needs. Our approach provides an insight into spatial behavior and decision making of leopards, and other large felids in rugged landscapes through the application of the HMMs in movement ecology

    Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models

    Get PDF
    The development of foraging strategies that enable juveniles to efficiently identify and exploit predictable habitat features is critical for survival and long-term fitness. In the marine environment, meso- and sub-mesoscale features such as oceanographic fronts offer a visible cue to enhanced foraging conditions, but how individuals learn to identify these features is a mystery. In this study, we investigate age-related differences in the fine-scale foraging behaviour of adult (aged ≥ 5 years) and immature (aged 2–4 years) northern gannets Morus bassanus. Using high-resolution GPS-loggers, we reveal that adults have a much narrower foraging distribution than immature birds and much higher individual foraging site fidelity. By conditioning the transition probabilities of a hidden Markov model on satellite-derived measures of frontal activity, we then demonstrate that adults show a stronger response to frontal activity than immature birds, and are more likely to commence foraging behaviour as frontal intensity increases. Together, these results indicate that adult gannets are more proficient foragers than immatures, supporting the hypothesis that foraging specializations are learned during individual exploratory behaviour in early life. Such memory-based individual foraging strategies may also explain the extended period of immaturity observed in gannets and many other long-lived species

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore